

Communication

Subscriber access provided by The Libraries of the | University of North Dakota

□-Aminoxy Peptides as New Peptidomimetic Foldamers

Fei Chen, Nian-Yong Zhu, and Dan Yang

J. Am. Chem. Soc., 2004, 126 (49), 15980-15981• DOI: 10.1021/ja044493+ • Publication Date (Web): 19 November 2004

Downloaded from http://pubs.acs.org on April 5, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 3 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 11/19/2004

γ^4 -Aminoxy Peptides as New Peptidomimetic Foldamers

Fei Chen,[†] Nian-Yong Zhu,[†] and Dan Yang^{*,†,‡}

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China, and Department of Chemistry, Fudan University, Shanghai 200433, China

Received September 11, 2004; E-mail: Yangdan@hku.hk

Foldamer^{1,2} is referred to any polymer with a strong tendency to adopt a specific compact conformation. Recently, peptidomimetic foldamers, such as β -peptides,^{3,4} γ -peptides,^{5,6} and δ -peptides,⁷ have attracted a lot of attention because of their unique conformations and interesting bioactivities.^{8–13} Our group has found that peptides derived from α - and β -aminoxy acids represent novel foldamers, which form several types of rigid secondary structures. For example, peptides consisting of α -aminoxy acids and β -aminoxy acids can form eight-membered-ring hydrogen bonds (α N-O turn)^{14,15} and nine-membered-ring hydrogen bonds (β N–O turn),^{16,17} respectively, between adjacent residues. In addition, oligomers of homochiral α -aminoxy acids and β -aminoxy acids can form helical structures consisting of consecutive N-O turns (1.88 helix14 and 1.7₉ helix,^{16,17} respectively). To enrich the category of aminoxy acid residues and test the ability of other aminoxy acids to form local intramolecular hydrogen bonds, we started to synthesize y-aminoxy acid peptides and explore their conformational properties. Here we report that γ^4 -aminoxy peptides are new peptidomimetic foldamers to form turn and helix structures with a 10membered-ring intramolecular hydrogen bond.

$$\begin{array}{ccc} \alpha \\ H_2N & \hline COOH \end{array} \\ H_2N & \hline COOH \end{array} \\ H_2N & \hline O & \hline \alpha \\ \alpha \text{-amino xy acid} \end{array} \\ \begin{array}{c} \beta \\ \beta \text{-amino xy acid} \end{array} \\ \begin{array}{c} \beta \\ \beta \text{-amino xy acid} \end{array} \\ \begin{array}{c} \beta \\ \gamma \text{-amino xy acid} \end{array} \\ \begin{array}{c} \beta \\ \gamma \text{-amino xy acid} \end{array} \\ \begin{array}{c} \beta \\ \gamma \text{-amino xy acid} \end{array}$$

 γ -Aminoxy diamides 1 and 2, each containing one γ -aminoxy acid residue, were synthesized to test their ability to form intramolecular hydrogen bonds: one without a side chain (1) and the other with a phenyl group at the C4-position (2). γ^4 -Aminoxy triamide 3 was also prepared to examine its potential to form consecutive intramolecular hydrogen bonds.

Figure 1 presents the N-H stretching region of the FT-IR spectra of 1-3. The spectra were recorded at a very low concentration (2) mM) at which intermolecular hydrogen bonding is unlikely to occur.¹⁸ For **1**, we observed two large peaks (3446 and 3392 cm⁻¹) and two small peaks (3338 and 3280 cm^{-1}). The former two are assigned to the stretching frequencies of the non-hydrogen-bonded amide NH_b and NH_a groups, whereas the latter two are due to the stretching of the weakly hydrogen-bonded NH_b and NH_a groups. This result suggests that no obvious intramolecular hydrogen bond is formed for the two amide protons of 1. In the IR spectrum of 2, three peaks were observed, which are assigned to the stretching frequencies of the non-hydrogen-bonded amide NH_b (3428 cm⁻¹), non-hydrogen-bonded N-oxy amide NHa (3388 cm⁻¹), and hydrogenbonded amide NH_b (3324 cm⁻¹) groups, respectively. The fact that the peak at 3428 cm⁻¹ is very weak relative to the one at 3324 cm⁻¹ suggests that NH_b of 2 forms a 10-membered-ring intramolecular hydrogen bond, i.e., a γ N–O turn (Figure 2). For 3, we observed four major peaks: 3441, 3387, 3325, and 3228 cm⁻¹,

Figure 1. FT-IR of 1-3 at low concentration (2 mM in CH₂Cl₂).

Figure 2. NOE signals observed for 1-3.

which are assigned to the stretching frequencies of the nonhydrogen-bonded amide NH_c group, the non-hydrogen-bonded N-oxy amide NH_a and NH_b groups, the hydrogen-bonded NH_c group, and the hydrogen-bonded amide NH_b groups, respectively. Since the non-hydrogen-bonded amide NH_c signal is weak while the hydrogen-bonded amide NH_c and NH_b signals are strong, the IR results indicate that **3** can form two consecutive γ N–O turns (Figure 2).

The results obtained from ¹H NMR studies are in agreement with the FT-IR experiments. Table 1 summarizes the chemical shifts of the amide protons and their chemical shift changes when the solutions were diluted from 200 to 0.78 mM in CDCl₃, or when DMSO- d_6 was added gradually to a 5 mM solution of 1-3 in CDCl₃ at room temperature. The chemical shifts of two amide protons of 1 at 0.78 mM are rather upfield (8.62 ppm for NH_a and 6.20 ppm for NH_b, respectively), with relatively large chemical shift changes in both ¹H NMR dilution and DMSO-d₆ addition studies, showing that no obvious intramolecular hydrogen bond is formed. Similarly, the N-oxy amide protons (NHa) of 2 and 3 appear to be nonhydrogen-bonded. However, the chemical shifts of NH_b of 2 and 3 are unusually downfield (7.05, and 10.57 ppm, respectively) and show little change in the ¹H NMR dilution ($\Delta\delta$ 0.2 ppm) and DMSO- d_6 titration studies ($\Delta \delta < 0.4$ ppm), revealing that these two amide protons form intramolecular hydrogen bonds. Although the chemical shift of NH_c of 3 could not be measured accurately due to its overlap with the aromatic protons (δ 7.2–7.5 ppm), it was unusually downfield and showed little change in ¹H NMR

[†] The University of Hong Kong. [‡] Fudan University.

Table 1. Chemical Shifts of Amide Protons and Their Chemical Shift Changes ($\Delta \delta_{NH}$ Values) in ¹H NMR Dilution Studies (dilu.) and DMSO-d₆ Addition Studies (DMSO) of 1-3 at 25 °C

	NH _a (ppm)			N <i>H</i> ₀ (ppm)		
	δ^a	$\Delta \delta^{\scriptscriptstyle b}$ (dilu.)	$\Delta \delta^c$ (DMSO)	δ^a	$\Delta \delta^{\scriptscriptstyle b}$ (dilu.)	$\Delta \delta^c$ (DMSO)
1 2 3	8.62 7.94 7.81	1.06 0.82 1.07	1.66 2.15 2.30	6.20 7.05 10.5	0.56 0.2 0.2	$0.91 < 0.4^d \\ 0.34$

^{*a*} δ is the amide NH's chemical shift obtained from the ¹H NMR spectrum of the indicated compound at 0.78 mM concentration in CDCl₃. $b \Delta \delta$ in the dilution studies was calculated as $\Delta \delta = \delta_{\rm NH} (200 \text{ mM}) - \delta_{\rm NH} (0.78 \text{ mm})$ mM). ^c $\Delta \delta$ in the DMSO-d₆ addition studies was calculated as $\Delta \delta = \delta_{\rm NH}$ (9% DMSO- d_6 in CDCl₃) – $\delta_{\rm NH}$ (5 mM in CDCl₃). ^d The signal overlaps with the aromatic protons (δ 7.2–7.5 ppm) upon the addition of DMSO.

Figure 3. X-ray structure of 2.

dilution and DMSO- d_6 addition studies. Thus, we conclude that NH_c of **3** also forms intramolecular hydrogen bonds.

We performed 2D-NOESY studies of 1-3 in CDCl₃ at 5 mM to probe their conformations in solution.¹⁸ As shown in Figure 2, we found a strong NOE signal between H_b and a γ proton of 2 but not 1. This suggests that the backbone of 2 is bent, while that of 1 is extended. The NOE signal between H_b and H_1 of $\boldsymbol{3}$ was also found. Because H_c overlaps with aromatic protons, its NOE signal with other protons could not be identified.

We obtained single crystals of 2 suitable for X-ray structural analysis. As shown in Figure 3, an intramolecular 10-memberedring hydrogen bond is formed between $C=O_i$ and NH_{i+2} . The hydrogen bond distance (O···H) is 2.07 Å, and the C_{γ} -O bond is gauche to the $C_{\alpha}-C_{\beta}$ bond with a 69° dihedral angle $\angle C_{\alpha}C_{\beta}C_{\gamma}O$. In our previously reported β -aminoxy peptides, the nine-memberedring hydrogen between $C=O_i$ and NH_{i+2} is further stabilized by another six-membered-ring hydrogen bond between NH_{i+2} and NO_{i+1} .¹⁶ However, in the X-ray structure of **2**, the distance between NO_{i+1} and NH_{i+2} is 3.3 Å, which is too long to form a hydrogen bond.

The CD spectra of compounds 2 and 3 taken at room temperature in 2,2,2-trifluoroethanol are shown in Figure 4. The CD signals have been normalized for the concentration and the number of backbone N–O turns of each compound. The CD curves of ${\bf 2}$ and 3, featuring a maximum at 192 nm and a shoulder at about 210 nm, suggest that 2 and 3 share the γ N–O turn structure, distinct from the previously reported α and β N–O turn structures.

In summary, compound 1 consisting of the unsubstituted γ -aminoxy acid cannot form intramolecular hydrogen bonds, possibly because the carbon backbone of 1 tends to adopt consecutive anti conformations. However, with the addition of a

Figure 4. Circular dichroism (CD) spectra of compounds 2 and 3 (0.4 mM in 2,2,2-trifluoroethanol) at 25 °C.

phenyl group at the γ position, the resulting γ -aminoxy peptide favors the anti orientation of bulky phenyl group relative to the $C_{\alpha}-C_{\beta}$ bond, thus forming the γ N–O turn. In peptide 3, the two consecutive homochiral 10-membered-ring hydrogen bonds form a novel helical structure. Therefore, peptides consisting of γ^4 aminoxy acids represent new peptidomimetic foldamers.

Acknowledgment. This work was supported by The University of Hong Kong, Hong Kong Research Grants Council (HKU 7098/ 01P and HKU 7367/03M), and the National Natural Science Foundation of China (Project No. 20202001). D.Y. acknowledges the Bristol-Myers Squibb Foundation for an unrestricted grant in Synthetic Organic Chemistry.

Supporting Information Available: Characterization data of 1-3; ¹H NMR dilution and DMSO- d_6 addition experiments of 1–3; 2D NOESY spectra of 1-3; X-ray structural analysis of compound 2; X-ray crystallographic file (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. *Rev.* 2001, 101, 3893-4011.
- Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180.
 Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015–2022.
- (4) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219–3232.
- (5) Hanessian, S.; Luo, X. H.; Schaum, R.; Michnick, S. J. Am. Chem. Soc. 1998, 120, 8569-8570.
- (6) Seebach, D.; Beck, A. K.; Brenner, M.; Gaul, C.; Heckel, A. Chimia 2001, 55.831-838
- (7) Long, D. D.; Smith, M. D.; Marquess, D. G.; Claridge, T. D. W.; Fleet, G. W. J. Tetrahedron Lett. **1998**, *39*, 9293–9296.
- (8) Porter, E. A.; Wang, X. F.; Lee, H. S.; Weisblum, B.; Gellman, S. H. *Nature* **2000**, *404*, 565–565.
- (9) Liu, D. H.; DeGrado, W. F. J. Am. Chem. Soc. 2001, 123, 7553–7559.
 (10) Clark, T. D.; Buehler, L. K.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 651-656
- (11) Kimmerlin, T.; Namoto, K.; Seebach, D. Helv. Chim. Acta 2003, 86, 2104 - 2109
- (12) Seebach, D.; Rueping, M.; Arvidsson, P. I.; Kimmerlin, T.; Micuch, P.; Noti, C.; Langenegger, D.; Hoyer, D. Helv. Chim. Acta 2001, 84, 3503-3510
- (13) Kritzer, J. A.; Lear, J. D.; Hodsdon, M. E.; Schepartz, A. J. Am. Chem. Soc. 2004, 126, 9468-9469.
- 50C. 2004, 120, 9400-9409.
 (14) Yang, D.; Qu, J.; Li, B.; Ng, F. F.; Wang, X. C.; Cheung, K. K.; Wang, D. P.; Wu, Y. D. J. Am. Chem. Soc. 1999, 121, 589-590.
 (15) Yang, D.; Li, B.; Ng, F. F.; Yan, Y. L.; Qu, J.; Wu, Y. D. J. Org. Chem. 2001, 66, 7303-7312.
- (16) Yang, D.; Zhang, Y. H.; Zhu, N. Y. J. Am. Chem. Soc. 2002, 124, 9966-
- 9967
- Yang, D.; Zhang, Y. H.; Li, B.; Zhang, D. W.; Chan, J. C. Y.; Zhu, N. Y.; Luo, S. W.; Wu, Y. D. J. Am. Chem. Soc. **2004**, 126, 6956–6966. Compounds **1–3** are monomeric species at this concentration, because (17)(18)
- the chemical shifts of the NH_a and NH_b protons remain constant at concentrations below 6 mM in ¹H NMR dilution studies.

JA044493+